Program on African Protected Areas & Conservation (PAPACO)

Wildlife monitoring practices and use in Central Africa

By Starkey, M., Scholtz, O. and Taylor, G.

Wildlife Conservation Society
Executive Summary

Monitoring is an essential part of adaptive management, and is necessary for evaluating the outcomes of conservation action. Ecological monitoring plays other roles in conservation, serving as an important communication tool for illustrating the plight of a species, demonstrating the outcomes of payment for ecosystem services schemes, and testing the success of different types of protected areas. Conversely monitoring is not a panacea; good ecological data in itself does not ensure the protection of a species.

Central Africa harbours an amazing diversity in both forest and savanna ecosystems. Over 153 protected areas have been created, covering more than 423,000 km², with ecological monitoring an increasingly important theme at the regional level. In the context of the increasing recognition of the value and plight of Central Africa’s protected areas and the role of ecological monitoring, this project conducted a comprehensive collation of wildlife monitoring reports from Central Africa’s protected areas; the goal was to evaluate the status and uses of wildlife monitoring, and identify the challenges and opportunities for improving this. A database of protected areas and their ecological monitoring information has been completed, with preliminary analyses presented in this report.

Our final sample included 121 protected areas (PAs) in six countries in Central Africa, with 205 reports on 255 individual surveys meeting the monitoring criteria we had set. We did not receive any response (“no information”) from 33 PAs, with most of these in the Democratic Republic of Congo. 74 (66%) PAs had some form of monitoring and 14 confirmed “no monitoring”. Equatorial Guinea boasts the most complete ecological survey coverage, followed by Gabon and the Republic of Congo, in terms of the percentage of PAs that have been surveyed.

The most frequent monitoring techniques are foot transects, followed by aerial surveys, and then reconnaissance walks. The former two usually provide density data, while the latter provides relative abundance data. By far the most frequently surveyed species is the African elephant, followed by great apes (western lowland gorilla and central chimpanzee), red duiker (species group), and red-fronted gazelle. All of these species have a wide distribution, although the gazelle appears in just one park in the scope of this survey. All apart from the gazelle are often collectively surveyed by foot transect and recces in multi-species surveys, while elephants are also the usual target species for aerial surveys. Species with more narrow ranges, including many endemic species, are far less frequently surveyed. Some wide-ranging species, notably the giant pangolin, have rarely been surveyed.

Based on the process of collating biological monitoring information and early analyses, this report offers a number of recommendations for improving the utility of biological monitoring.

This report has been accompanied by a series of factsheets on a variety monitoring techniques, providing methodological detail and an entry into specialized literature. The final database can be used as a growing tool for more data as it becomes available.
Table of contents

Executive Summary .. 2

1. Introduction: ecological monitoring and protected area management ... 4
 1.1. Ecological monitoring .. 4
 Uses of ecological monitoring .. 4
 1.1. Protected area ecological monitoring in Central Africa ... 6
 The institutional context ... 6
 1.2. Critiques of ecological monitoring ... 6
 1.3. Objectives of this project ... 7

2. Methods ... 8
 2.1. Survey Scope .. 8
 2.2. Data collection methods .. 9
 Protected area details .. 9
 Obtaining monitoring reports ... 9
 Categorisation .. 9

3. Results ... 10
 3.1. Number and distribution of surveys ... 10
 3.2. Monitoring technique ... 12
 3.3. What has been monitored ... 13
 3.4. Uses of monitoring data for management ... 14

4. Conclusions and recommendations ... 14

5. Acknowledgements .. 17

6. References cited .. 17

7. Bibliography ... 21

Appendix I Protected Areas Surveyed .. 39

Appendix II Species surveyed ... 45
1. Introduction: ecological monitoring and protected area management

1.1. Ecological monitoring

Monitoring can be defined as “intermittent recording of the condition of a feature of interest to detect or measure compliance with a predetermined standard” (Hellawell (1991) cited by Legg and Nagy (2006)). In the field of conservation, the features of interest are ecological: generally habitats and populations of species or groups of species.

Uses of ecological monitoring

Management Tool

In principle at least, appropriate and timely ecological data allows protected area managers to allocate resources and choose between different types or intensities of management intervention in order to make best use of scarce conservation resources. Ecological monitoring is an essential part of adaptive management—“learning by doing”, or “the integration of design, management, and monitoring to systematically test assumptions in order to adapt and learn” (Salafsky et al., 2001). Ecological monitoring is necessary for evaluating the outcomes of conservation action and thereby “closing the adaptive management circle” (Figure 1).

![Figure 1: The adaptive management cycle, as presented by the Conservation Measures Partnership (CMP, 2013).](image-url)
This role of ecological monitoring in adaptive management has meant that it has become a standard part of almost all protected area planning and management “best practices” (Thomas and Middleton, 2003; CMP, 2013) and is enshrined in the strategies of governments, donors and conservation NGOs (Stem et al., 2005). The monitoring objectives and application of the results are explicit to park management decisions.

Strategic Tool

Apart from adaptive management, ecological monitoring of protected areas has other roles to play in conservation at particular sites:

The results of monitoring may be used as a communication tool to demonstrate success of conservation actions or conversely to illustrate the plight of species or habitats in order to raise funds or to build public or political will for conservation actions. Ecological monitoring is necessary and required for demonstrating outcomes in payments for ecosystem services (PES) programmes where payments for conservation are conditioned on results (Wunder, 2007), be that under biodiversity offset schemes (BBOP, 2012), Reducing Emissions from Deforestation and Degradation (REDD) programmes or otherwise. Conversely, ecological monitoring can help prove (and perhaps quantify) liability for damage in the case of environmental impacts, for example due to pollution. Lastly, by providing objective reference points about the state of conservation targets, ecological monitoring can help guard against the shifting baseline syndrome that is as prevalent on land as in the seas (Papworth et al., 2009).

At a broader scale, as the number of protected areas and investment in conservation increases, there has been a growing call for conservationists to justify the effectiveness of their actions through robust empirical comparisons of the success of different types of protected area with that of other management approaches (Ferraro and Pattanayak, 2006; Miteva et al., 2012). Such evaluations are increasingly required by donors to justify investment in protected areas. Reliable ecological monitoring data is the necessary basis for such evaluations of conservation effectiveness.

Since protected area networks are frequently designed to be the “strongholds” for threatened species, ecological monitoring data from protected areas frequently has a high weighting in evaluations of extinction risk under the IUCN red list criteria. For example in Central Africa, data showing population declines within protected areas formed a core part of the argument for listing western lowland gorillas as Critically Endangered (Walsh et al., 2008). Since IUCN red list classifications are increasingly used to evaluate the level of environmental mitigation required by industrial and other development, for example by the International Finance Corporation (IFC) and the Equator Banks, the quality of protected area ecological monitoring data can have practical impacts well beyond the borders of individual protected areas.
1.1. Protected area ecological monitoring in Central Africa

Central Africa harbours an amazing diversity of wildlife in both forest and savanna ecosystems. Flagship species include both species of gorilla, three sub-species of chimpanzee, the bonobo, forest elephants and the okapi.

In response to the threats to these species and the rest of the region’s diversity, a network of more than 153 protected areas covering more than 423,000 km² has been created in Central Africa. While a few are among the oldest protected areas in Africa, many of these protected areas have been created in the past 20 years.

The institutional context

Ecological monitoring for protected areas is increasingly being adopted, in principle at least, across Central Africa. At a regional level, monitoring (in the sense of “understanding the state of the resource”) is a key theme of the Congo Basin Forest Partnership (CBFP) and of the COMIFAC Plan de Convergence. This has been put into practice by CBFP partners in different ways. For example, “Institutionalising Natural Resource Monitoring” has been an a key “Intermediate Result” for the Central African Regional Programme for the Environment (CARPE) programme and whose Regional Development Cooperation Strategy includes as an indicator “Number of biodiversity surveys meeting international standards for “best practices”, implemented by local institutions, used for adaptive management of macrozone(s) or landscape(s)”. Institutionally, this focus has been operationalised by the creation of the Observatoire des Forêts d’Afrique Centrale (OFAC) and its sister organisation Observatoire Satellitaire des Forêts d’Afrique Centrale (OSFAC) both organs of COMIFAC which are mandated to collate and disseminate data on the condition of forests, including protected areas. Both have received significant and long-lasting institutional support for collecting, collating and disseminating ecological and socio-economic data from many different international donors.

More recently, the desire to understand the effectiveness of investments in protected areas has recently led to several regional initiatives aiming to collate data from protected area monitoring (and other sources) and make it available to decision makers. This includes the “Decision Support System” proposed by the Réseau des Aires Protégées d’Afrique Centrale (RAPAC), the “Protected Areas Observatory” planned by the Biodiversity and Protected Areas Management Programme (BIOPAMA) consortium.

1.2. Critiques of ecological monitoring

Despite the widespread acceptance that adaptive management is a best practice for conservation, the extent to which ecological monitoring should really be a priority for protected area management remains controversial, for three main reasons:

1. Expense:
implementing ecological monitoring that is statistically reliable frequently requires considerable personnel, logistics and time. Deciding how much to spend on monitoring is therefore always a trade-off: money could be better spent on more intensive protection, on other management interventions, on surveys of as-yet non-protected areas, or on something completely different. Given the pressing nature of many threats, and levels of funding that have remained inadequate despite major donor contributions, the trade-off between monitoring and protection is the most controversial.

2. Data quality:

much ecological monitoring may not in fact be able to reliably detect ecological changes over time-scales useful for management. This frequently occurs due to poorly-planned or executed data collection (Lindenmayer and Likens, 2010; Legg and Nagy, 2006), but even where statistical rigour is applied, data quality may be low as a result of the real-world challenges of detecting elusive species in variable and usually difficult field conditions.

3. Effective links with management:

monitoring is clearly not a panacea for effective management and examples where species have been lost or have suffered major declines despite intensive monitoring abound: intensive monitoring of the northern white rhino in Garamba National Park in Democratic Republic of Congo (DRC) was unable to prevent their elimination and the near extinction in the wild of this subspecies in the face of war and insecurity (Emslie, 2012), while repeated surveys of western black rhino in Cameroon failed to help overcome the political apathy responsible for its demise (Lagrot et al., 2007).

The choice about whether or not to invest in ecological monitoring is complex and depends on many different factors. Many different authors have tried to codify the different decisions about monitoring that protected area managers need to make and the factors that should influence them either in general (see for example Field et al., 2005; Field et al., 2007; McDonald-Madden et al., 2010; Nichols and Williams, 2006; Nichols, 2012; Tucker et al., 2005) or for particular species or species groups (for example Hedges, 2012; Kühl et al., 2008). In is unclear however, to what extent 1) these academic discussions really influence monitoring practice on the ground in protected areas and 2) whether monitoring results are indeed used to influence management. This project aims take the first step to answering these questions by compiling all records of ecological monitoring and documenting how ecological monitoring is conducted in practice in Central Africa.

1.3. Objectives of this project

In this context of increasing recognition of the value and plight of Central African protected areas, along with considerable institutional and financial investment in monitoring, this project aims to conduct an initial evaluation to:
1. describe the current state of ecological monitoring practices for Central African protected areas, in terms of methods, frequency and species targeted, focusing on wildlife;
2. identify where and how protected area ecological monitoring is used to inform management practice;
3. identify the major challenges and opportunities for improving ecological monitoring and the use of ecological monitoring data in Central Africa.

Although some discussion of methodological issues is necessary to set the existing practice into context, this report does not aim to be a detailed methodological guide or critique for any specific method: these exist in specialised method-specific or species-specific literature. This project includes:

- a set of seven factsheets that describe the most commonly-used monitoring techniques for several high-priority conservation targets in Central Africa. These factsheets provide more methodological detail and provide an entry into the specialised literature.
- a database of biological monitoring in Central Africa
- this report with preliminary analysis on where, how and what has been monitored in Central Africa, which will be followed by a more in-depth report that will also consider use of monitoring as a park management tool and recommendations.

2. Methods

2.1. Survey Scope

See supplementary document on methods with greater detail on definitions and data collection methods. We attempted a systematic compilation of wildlife surveys conducted in Central African protected areas based on the following criteria:

- wildlife surveys that aimed to measure abundance, relative abundance, density or distribution of predetermined species, that specifically aim to detect population changes over time or that have subsequently been used for that purpose. Baseline surveys with no repeat were included if an only if they were clearly designed to serve as a basis for a monitoring programme;
- surveys from Cameroon, Central African Republic, Democratic Republic of Congo, the continental portion of Equatorial Guinea, Gabon and Republic of Congo;
- surveys of terrestrial and arboreal large- and medium-sized vertebrate species only (i.e. not marine or freshwater species), as protecting these species is a major objective for most protected areas in central Africa and there is sufficiently widespread monitoring that an evaluation is feasible and relevant;
- surveys from within protected areas in IUCN categories I–VI, that are recognized in either national forest atlases, or in the World Database of Protected Areas;
surveys conducted prior to protected area creation were included only if the protected area was in fact created and the survey was subsequently used as a basis for monitoring;

- surveys conducted at a park-wide scale. Localised studies, focusing on less than 10% of a protected area were not included, except where they were either 1) a stratum of a wider survey, 2) specifically designed to provide information at the scale of the protected area or 3) where the area surveyed represents the majority of the occurrence of a target species.

- forest-cover monitoring was not included as this is a fast-moving field that is increasingly being conducted at the scale of entire countries, regions or biomes rather than at the scale of individual protected areas (for example see Hansen et al. 2013).

2.2. Data collection methods

Protected area details

We established a list of protected areas in IUCN categories I–VI using the World Database on Protected Areas (WDPA) (IUCN and UNEP, 2013) and the most recent versions of each country’s interactive forest atlas (WRI, 2010a; WRI, 2010b; WRI, 2011a; WRI, 2011b)2, supplemented with local knowledge for recently created protected areas. We obtained shapefiles and compiled information on dates of protected area establishment and surface area from the same sources.

The final list of protected areas included in this study is presented in Appendix I

Obtaining monitoring reports

We obtained documents through: 1) direct contacts with known monitoring specialists in the region, 2) direct contacts and emails sent to protected area managers (with telephone follow-up where possible), 3) an online search, both with a generic search engine and on specific sites known to hold such reports, notably the CARPE Information Management Tool3 and the African elephant database4 and 4) combing the reference lists of available protected area management plans, monitoring reports and species-specific reviews and action plans. We made use of several regional training courses organised at Wildlife Conservation Society (WCS)’ regional training centre in Lopé National Park to increase the number of direct contacts with protected area managers.

The complete list of reports used is presented in the bibliography to this report. We welcome any corrections, updates and additions.

Categorisation

We categorised surveys according to the following variables:

- **Date:** we recorded the year of the survey. For surveys lasting more than a year, we report the last year of the survey.

- **Spatial scope:** park-wide or stratum.
Target species: species that were explicitly stated as survey targets and around which the survey was designed. Most surveys report observations of many different species, but were in fact only designed for a small subset.

Survey method: we categorized both by physical method (ground transects, aerial survey etc), by type of observation (direct or indirect) and by data collection method (distance sampling, fixed-with transects/recces, sample vs complete counts).

Funder: we recorded the principal and secondary funders of surveys and categorised them by type: national government, bilateral aid, multilateral aid, private sector, private funds.

Data output: the type of data produced (density, encounter rate, total count) and the level of uncertainty in the estimate.

We did not systematically record information on the costs of surveys; few reports provide such information and non-standard accounting practices mean that even when costs are reported it is difficult to systematically compare one organisation or site with another.

We tabulated our findings in a database linked to a shapefile of protected areas.

As mentioned above, a detailed evaluation of methods and data quality is far beyond the scope of this report, and we did not attempt to do so. However, when reading the reports, we evaluated them according to a number of criteria based on monitoring (and more generally basic scientific) best practice that are important for judging the utility and efficiency of monitoring:

Power analysis: was survey design based on an evaluation of the required precision or amount of change to be detected?

Treatment of uncertainties: did the report clearly present statistical uncertainties in the results in a standard format (eg standard error, coefficient of variation)?

Causality: were the monitoring activities designed to identify the causes of any changes identified?

Justification of conclusions: were conclusions that were drawn (notably regards changes, or lack of changes) clearly linked to and justified by the results presented?

Whilst reading reports, we also made general notes about report clarity and quality.

3. Results

3.1. Number and distribution of surveys

Our final sample included 121 protected areas in six countries (Appendix I). We obtained 205 technical reports and articles (see Bibliography) reporting results from 255 individual surveys meeting our criteria in protected areas across Central Africa.
For 33 protected areas we were unable to confirm whether or not any ecological monitoring has taken place (Table 1). We believe it is most likely there has been no monitoring in the majority of these 34 protected areas, but cannot confirm this. For the 88 protected areas where we were able to confirm whether or not monitoring took place, 74 had at least a baseline survey completed and 14 protected areas had no monitoring at all.

Overall, two-thirds (66%) of the combined area of the 121 protected areas had at least some monitoring (Table 2). The proportion is much higher in Gabon, Republic of Congo and Equatorial Guinea where the vast majority (99-100%) of the protected area estate has been surveyed at least once. However, in Democratic Republic of Congo only about half (49%) of its large protected area estate has been surveyed at least once; this heavily influences the overall average.

<table>
<thead>
<tr>
<th>Country</th>
<th>Number of protected areas with:</th>
<th></th>
<th></th>
<th></th>
<th>Total</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Some monitoring</td>
<td>No monitoring</td>
<td>No information</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Cameroun</td>
<td>18</td>
<td>5</td>
<td>4</td>
<td>27</td>
<td></td>
</tr>
<tr>
<td>Central African Rep</td>
<td>8</td>
<td>0</td>
<td>4</td>
<td>12</td>
<td></td>
</tr>
<tr>
<td>Dem Republic of Congo</td>
<td>15</td>
<td>4</td>
<td>23</td>
<td>42</td>
<td></td>
</tr>
<tr>
<td>Equatorial Guinea</td>
<td>8</td>
<td>0</td>
<td>0</td>
<td>8</td>
<td></td>
</tr>
<tr>
<td>Gabon</td>
<td>15</td>
<td>3</td>
<td>0</td>
<td>18</td>
<td></td>
</tr>
<tr>
<td>Rep of Congo</td>
<td>10</td>
<td>2</td>
<td>2</td>
<td>14</td>
<td></td>
</tr>
<tr>
<td>Total</td>
<td>74</td>
<td>14</td>
<td>33</td>
<td>121</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Country</th>
<th>Approx area (km²) of protected area with:</th>
<th></th>
<th></th>
<th></th>
<th>Total</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Some monitoring</td>
<td>No monitoring</td>
<td>No information</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Cameroun</td>
<td>34,808</td>
<td>1,921</td>
<td>2,188</td>
<td>38,916</td>
<td></td>
</tr>
<tr>
<td>Central African Rep</td>
<td>39,910</td>
<td>0</td>
<td>16,146</td>
<td>56,056</td>
<td></td>
</tr>
<tr>
<td>Dem Republic of Congo</td>
<td>120,412</td>
<td>58,665</td>
<td>66,717</td>
<td>245,793</td>
<td></td>
</tr>
<tr>
<td>Equatorial Guinea</td>
<td>4,258</td>
<td>0</td>
<td>0</td>
<td>4,258</td>
<td></td>
</tr>
<tr>
<td>Gabon</td>
<td>39,755</td>
<td>382</td>
<td>0</td>
<td>40,137</td>
<td></td>
</tr>
<tr>
<td>Rep of Congo</td>
<td>41,885</td>
<td>299</td>
<td>518</td>
<td>42,702</td>
<td></td>
</tr>
<tr>
<td>Total</td>
<td>281,028</td>
<td>61,266</td>
<td>85,569</td>
<td>427,863</td>
<td></td>
</tr>
</tbody>
</table>

A few of the 74 protected areas that have been surveyed have been surveyed on many occasions, but almost half have been surveyed only once (Figure 2). However, many of the protected areas that have been surveyed repeatedly are large; despite there being many more protected areas that have
been surveyed just once (=32 PAs), this cover a similar surface area to protected areas surveyed several times that are, however, fewer in number. protected areas that have been surveyed once (=32 PAs), cover a similar total surface area to those that have been surveyed three (=9 PAs) or four (=7 PAs) times (Figure 2).

![Figure 2: Number of surveys per protected area and by area surveyed (n=255 surveys across 121 protected areas)](image)

3.2. Monitoring technique

Ground-based transect surveying\(^1\) is the most frequently used survey technique, which in the most part has provided density information (Figure 3). This is followed by aerial surveys, which also typically provides density information. Recces (ground-based reconnaissance walks) in their nature are restricted to providing relative abundance data, but have also been used for presence-absence information. The category “Other” is composed of questionnaires, complete foot counts, and calling stations.

\(^1\) composed of three categories based on the survey design; whether DISTANCE program was used to design the transect location and for analysis, and whether perpendicular distance of a sign is measured from the transect to calculate sign density.
3.3. What has been monitored

By far the most frequently surveyed species is the African Elephant (*Loxodonta africana*). This is followed by the wide-spread great ape sub-species (*Gorilla gorilla gorilla* and *Pan troglodytes troglodytes*), red duiker (a group of medium-sized duiker species), and red-fronted gazelle (*Eudorcas rufifrons*). All of these apart from the red-fronted gazelle, are frequently surveyed together in ground-based transect surveys and recces. They are also wide-ranging within our survey scope, and found in all six of the six countries included in this study. The red-fronted gazelle distribution range is a broad thin band from west Africa, reaching to the north-western limits of Cameroon where it has been surveyed almost annually in Waza National Park since 1960 (Scholte et al, 2007). See Annex II for full list of species with number of survey data.

The general trend then is that species with a broad distribution have been more frequently surveyed as they are included in multi-species surveys repeated in a large number of protected areas, while those with restricted range (including endemic species and sub-species) have been less often surveyed as they are found in a small number of protected areas. Some wide-ranging species have been rarely surveyed simply due to difficulty of surveying these species. The giant pangolin (*Smutsia gigantean*) is rare and highly cryptic, while some duiker species can only be distinguished from genetic analysis of the dung if this is the observational sign.
3.4. Uses of monitoring data for management

There are few examples of monitoring for decisions at a site level, with examples presented in the accompanying set of factsheets.

We were, however, able to find several examples where explicit and scientifically strongly-supported monitoring results were not used for management. For example, in Cameroon surveys by Croes et al. (2011) showed that the lion population in the Benoué complex was greatly below the potential level given prey abundance (itself significantly depleted) and that existing quotas for trophy hunting greatly exceeded levels shown to be sustainable. Despite high-quality data, no change in hunting quota (either in number or in age) has yet been implemented.

4. Conclusions and recommendations

The results presented in this preliminary report here show that:

- Some form of monitoring takes place in the majority (66%) of central African protected areas (PAs). The proportion of surface area that has been surveyed once, twice, three or four times is roughly similar (between 11-16%). The one-fifth of PA surface area in the Democratic Republic of Congo (DRC) with “no monitoring” (does not include PAs with “no information”) is composed of two huge PAs, Bili-Uere Hunting Reserve and Sankuru Natural Reserve, and
two smaller sized PAs. Most of the unknown monitoring status can be attributed to the DRC, followed by Central African Republic.

- Most monitoring is focused on wide-ranging species that are also collectively surveyed, such as elephants, apes and some red duikers. This has provides valuable data on the regional population status and trends of these species, as seen in the recent meta-analysis of forest elephants that showed a 63% population loss and 30% range loss from 2002-2011\(^2\).

Based on the process of collating biological monitoring information and early analyses, here we offer a number of recommendations for improving the utility of biological monitoring.

Recommendation 1: Experiment with new methods, but ensure that future surveys remain compatible with existing data.

New methods such as genetics, camera-trapping and acoustic surveys all have potential to greatly increase the effectiveness and efficiency of protected area ecological monitoring in central Africa. However, there is a risk that new techniques, especially those that produce marketable images, are adopted rapidly to the exclusion of more traditional (and perhaps less “sexy”) techniques.

Where new methods are adopted, they should either be used to enhance existing datasets (for example by providing data on the ratio of gorilla to chimpanzee nests) or should be carefully calibrated against existing methods to ensure comparability with older data sets.

Recommendation 2: Recognise the importance of good management of surveys

For good reasons, donors tend to want to reduce what are seen as unnecessary “overhead” costs, especially salaries for non-field staff. However, as this study has shown, logistical delays can be a major factor increasing the cost of surveys. In such situations, money spent on effective managers may in the end result in net cost savings.

Donors and managers could help survey organisers improve performance (and justify management costs) by requiring that survey implementors set targets for effort during surveys according to standardised categories and then report actual effort applied. While recognising that every protected area has different logistical challenges, and that unforeseeable and unavoidable logistical issues will occur, standardised reporting of survey efficiency could be used to benchmark the performance of different organisations or of different survey teams within organisations (Sutherland and Peel, 2010). An example set of categories for standardised survey effort reporting is presented in Table 3.

Tracking use of human resources is a management best practice and good managers will already be using a system like this, so requiring it would not be a major additional administrative burden.

Table 3: Possible categories for planning and reporting on effort. Reporting units would be person-days or team-days as appropriate.

<table>
<thead>
<tr>
<th>Category</th>
<th>Definition</th>
</tr>
</thead>
</table>

\(^2\) Maisels et al. (2013) Devastating decline of the forest elephants in Central Africa. PLOS ONE. Vol 8, Issue 3
Primary data collection
Days spent implementing the principal data collection method of the survey. For example days collecting transect data.

Secondary data collection
Days collecting supporting data. Example could include days spent conducting a local decay-rate survey or recces conducted between transects.

Field logistics
Planned days spent conducting or preparing for missions but where no data is collected.

Data analysis and reporting
Days spent on data entry, data analysis and on reporting.

Planned downtime
Planned rest and recuperation time, time-in-lieu, holidays.

Unplanned downtime
Days where no data collection, planned logistics or data analysis is conducted but which are attributed to the survey. For example, days waiting due to lack of material, transport issues, personnel issues etc where staff cannot be assigned to other duties or budgets.

Recommendation 3: Ensure that pilot surveys are cost-effective

In the best case, pilot surveys can provide estimates of encounter rates and of variation in encounter rates that can help significantly improve survey precision and cost-effectiveness by identifying required sampling effort and stratification possibilities. However, in some cases, especially large remote areas the cost of pilot surveys can approach that of a complete survey. Where pilot surveys are proposed, they must be clearly justified; this should include an assessment of cost-effectiveness.

Recommendation 4: Create incentives for increasing the quality and dissemination of ecological monitoring results.

Although several Central African nationals have produced journal articles based on ecological monitoring surveys (e.g. Omari et al., 2009; Inogwabini et al., 2000; Forboseh et al., 2007; Inogwabini et al., 2007), it is unrealistic to expect every survey to be of a uniqueness sufficient to warrant publication in a high quality international peer-reviewed journal. Unfortunately there are an increasing number of “predatory” online journals with limited or no peer-review that will publish poor quality and even plagiarised work. This is not a theoretical issue: we came across a number of instances of potential plagiarism based on wildlife surveys of protected areas during the course of this review.

Establishing a regional peer-reviewed, open access (and probably online-only) journal could help bridge the gap between the major international journals and the “predatory” ones. This could perhaps be similar to Pachyderm, the journal of the African Elephant Specialist Group or Koedoe, the journal of the South Africa National Parks Service or some of the specialist ornithological journals like Malimbe. An outlet such as this would have the benefits of 1) provide an incentive for surveys to be written up to a quality above the “bare-minimum” required for donors, 2) provide much needed feedback to monitoring specialists and 3) improve the transparency and dissemination of monitoring results.
Managing production of such a journal would be an obvious service that an organisation like RAPAC could provide to the protected area community. It would only be credible if peer-review of a sufficiently high standard was established and maintained. A partnership with an existing high-quality conservation-oriented journal would be one way of ensuring that quality is maintained.

5. Acknowledgements

Much thanks are owed to the numerous individuals from across Central Africa who responded to our call for data, reports and questionnaire, and made their data and opinions available.

Malcolm Starkey oversaw and contributed to all components of the project and the report.

Collation of the reports into a bibliography and construction of the monitoring data-base was mostly carried out by Gemma Taylor.

Fiona Maisels provided comments on the monitoring factsheets and completeness of the bibliography.

Ashley Vosper, Rostand Abaa and Olivia Scholtz contributed to the database and development of monitoring factsheets.

6. References cited

7. Bibliography

We present here the sources used to compile the maps and tables. We compiled these sources according to the terms of reference of this study and the definitions given in section 2.1. The bibliography therefore includes:

- wildlife surveys that aimed to measure abundance, relative abundance, density or distribution of predetermined species, that specifically aim to detect population changes over time or that have subsequently been used for that purpose;
- surveys from Cameroon, Central African Republic, Democratic Republic of Congo, the continental portion of Equatorial Guinea, Gabon and Republic of Congo;
- terrestrial species only (i.e. not marine or freshwater);
- surveys from within IUCN category I–IV protected areas;
- surveys conducted prior to protected area creation but only if the protected area was in fact created and the survey is subsequently used as a basis for monitoring;
- protected areas-wide surveys; Localised studies, focusing on less than 10% of a protected area are not included, except where that is a stratum of a wider survey, or where that area represents the majority of the occurrence of a target species.

Where there are several reports or papers referring to the same study (for example English and French version), all are included. Individual mission reports are excluded unless they are the only source of data on a survey.

Cameroon

HALFORD, T., H. EKODECK, B. SOCK, M. DAME and P. AUZEL (2003). Statut des populations de gorilles (Gorilla gorilla gorilla) et de chimpanzés (Pan troglodytes troglodytes) dans le sanctuaire à gorilles de Mengamé, Province du Sud, Cameroun: Densité, distribution, pressions et conservation. MINEF and JGI, Yaoundé, Cameroon.

Central African Republic

Democratic Republic of Congo

Republic of Congo

Gabon

Appendix I Protected Areas Surveyed

<table>
<thead>
<tr>
<th>Country</th>
<th>PA Name</th>
<th>PA type</th>
<th>Ecological Data Status</th>
<th>Management Plan</th>
<th>Date created</th>
<th>Area hectares</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cameroun</td>
<td>Banyang-Mbo</td>
<td>Faunal Sanctuary</td>
<td>Data</td>
<td>Pas encore (confirmé par ancien conservateur)</td>
<td>1996</td>
<td>69 093</td>
</tr>
<tr>
<td>Cameroun</td>
<td>Bénoué</td>
<td>National Park</td>
<td>Data</td>
<td>Validé</td>
<td>1968</td>
<td>199 241</td>
</tr>
<tr>
<td>Cameroun</td>
<td>Bouba Ndjida</td>
<td>National Park</td>
<td>Data</td>
<td>En cours</td>
<td>1968</td>
<td>213 414</td>
</tr>
<tr>
<td>Cameroun</td>
<td>Boumba Bek</td>
<td>National Park</td>
<td>Data</td>
<td>En cours</td>
<td>2005</td>
<td>238 941</td>
</tr>
<tr>
<td>Cameroun</td>
<td>Campo Ma’an</td>
<td>National Park</td>
<td>Data</td>
<td>Validé</td>
<td>2000</td>
<td>260 944</td>
</tr>
<tr>
<td>Cameroun</td>
<td>Deng Deng</td>
<td>National Park</td>
<td>Data</td>
<td>Pas de données</td>
<td>2010</td>
<td>75 182</td>
</tr>
<tr>
<td>Cameroun</td>
<td>Dja</td>
<td>Wildlife Reserve</td>
<td>Data</td>
<td>Validé</td>
<td>1950</td>
<td>590 053</td>
</tr>
<tr>
<td>Cameroun</td>
<td>Douala Edéa</td>
<td>Wildlife Reserve</td>
<td>No Data</td>
<td>Pas encore</td>
<td>1932</td>
<td>168 116</td>
</tr>
<tr>
<td>Cameroun</td>
<td>Faro</td>
<td>National Park</td>
<td>Data</td>
<td>Validé</td>
<td>1947</td>
<td>342 887</td>
</tr>
<tr>
<td>Cameroun</td>
<td>Kagwene</td>
<td>Gorilla sanctuary</td>
<td>Data</td>
<td>Pas encore</td>
<td>2008</td>
<td>1 931</td>
</tr>
<tr>
<td>Cameroun</td>
<td>Kala-Maloué</td>
<td>National Park</td>
<td>Never Surveyed</td>
<td>Pas encore</td>
<td>1972</td>
<td>6 757</td>
</tr>
<tr>
<td>Cameroun</td>
<td>Kilum-Ijim</td>
<td>Sanctuary</td>
<td>Data</td>
<td></td>
<td>1987</td>
<td>1 006</td>
</tr>
<tr>
<td>Cameroun</td>
<td>Kimbi</td>
<td>Wildlife Reserve</td>
<td>No Data</td>
<td>Pas encore</td>
<td>1964</td>
<td>5 163</td>
</tr>
<tr>
<td>Cameroun</td>
<td>Korup</td>
<td>National Park</td>
<td>Data</td>
<td>Validé</td>
<td>1986</td>
<td>129 457</td>
</tr>
<tr>
<td>Cameroun</td>
<td>Lac Ossa</td>
<td>Wildlife Reserve</td>
<td>Never Surveyed</td>
<td>Pas encore (confirmé par conservateur)</td>
<td>1968</td>
<td>4 539</td>
</tr>
<tr>
<td>Cameroun</td>
<td>Lobéché</td>
<td>National Park</td>
<td>Data</td>
<td>Validé</td>
<td>2001</td>
<td>218 372</td>
</tr>
<tr>
<td>Pays</td>
<td>Réserve ou sanctuaire</td>
<td>Type de réserve</td>
<td>Données</td>
<td>Validation</td>
<td>Année</td>
<td>Nombre de km²</td>
</tr>
<tr>
<td>------------</td>
<td>-----------------------</td>
<td>----------------</td>
<td>---------</td>
<td>------------</td>
<td>-------</td>
<td>---------------</td>
</tr>
<tr>
<td>Cameroun</td>
<td>Mbam et Djerem</td>
<td>National Park</td>
<td>Data</td>
<td>Validé</td>
<td>2000</td>
<td>430 242</td>
</tr>
<tr>
<td>Cameroun</td>
<td>Mengamé</td>
<td>Gorilla sanctuary</td>
<td>Data</td>
<td>En cours</td>
<td>2008</td>
<td>120 646</td>
</tr>
<tr>
<td>Cameroun</td>
<td>Mont Cameroun</td>
<td>National Park</td>
<td>Data</td>
<td>Pas de données</td>
<td>2009</td>
<td>58 148</td>
</tr>
<tr>
<td>Cameroun</td>
<td>Monts Bakossi</td>
<td>National Park</td>
<td>No Data</td>
<td>Pas encore</td>
<td>2007</td>
<td>36 000</td>
</tr>
<tr>
<td>Cameroun</td>
<td>Mozogo Gokoro</td>
<td>National Park</td>
<td>Never Surveyed</td>
<td>Pas encore</td>
<td>1968</td>
<td>1 736</td>
</tr>
<tr>
<td>Cameroun</td>
<td>Mpem et Djim</td>
<td>National Park</td>
<td>Never Surveyed</td>
<td>Pas encore</td>
<td>2004</td>
<td>104 138</td>
</tr>
<tr>
<td>Cameroun</td>
<td>Nki</td>
<td>National Park</td>
<td>Data</td>
<td>En cours</td>
<td>2005</td>
<td>326 567</td>
</tr>
<tr>
<td>Cameroun</td>
<td>Santchou</td>
<td>Wildlife Reserve</td>
<td>No Data</td>
<td>Pas encore</td>
<td>1964</td>
<td>9 500</td>
</tr>
<tr>
<td>Cameroun</td>
<td>Takamanda</td>
<td>National Park</td>
<td>Data</td>
<td>En cours</td>
<td>2008</td>
<td>62 716</td>
</tr>
<tr>
<td>Cameroun</td>
<td>Vallée du Mbere</td>
<td>National Park</td>
<td>Never Surveyed</td>
<td>Pas encore</td>
<td>2004</td>
<td>74 884</td>
</tr>
<tr>
<td>Cameroun</td>
<td>Waza</td>
<td>National Park</td>
<td>Data</td>
<td>Validé</td>
<td>1968</td>
<td>141 939</td>
</tr>
<tr>
<td>Congo</td>
<td>Conkouati-Douli</td>
<td>National Park</td>
<td>Data</td>
<td>En cours</td>
<td>1999</td>
<td>513 952</td>
</tr>
<tr>
<td>Congo</td>
<td>Dimonika</td>
<td>Réserve de biosphère/ ou Faunal reserve?</td>
<td>Data</td>
<td>Pas encore</td>
<td>1988</td>
<td>147 321</td>
</tr>
<tr>
<td>Congo</td>
<td>Lac Télé</td>
<td>Community reserve</td>
<td>Data</td>
<td>En cours</td>
<td>2001</td>
<td>459 939</td>
</tr>
<tr>
<td>Congo</td>
<td>Lefini</td>
<td>Faunal reserve</td>
<td>Data</td>
<td>Pas encore</td>
<td>1951</td>
<td>658 021</td>
</tr>
<tr>
<td>Congo</td>
<td>Lesio-Louna</td>
<td>Gorilla sanctuary</td>
<td>Data</td>
<td>En cours</td>
<td>1993</td>
<td>53 254</td>
</tr>
<tr>
<td>Congo</td>
<td>Lossi</td>
<td>Gorilla sanctuary</td>
<td>Data</td>
<td>Pas encore</td>
<td>2001</td>
<td>80 864</td>
</tr>
<tr>
<td>Congo</td>
<td>Mont Fouari</td>
<td>Faunal reserve</td>
<td>Data</td>
<td>Pas encore</td>
<td>1956</td>
<td>28 809</td>
</tr>
<tr>
<td>Congo</td>
<td>Mont Mavoumbou</td>
<td>Faunal reserve/ ou Hunting reserve?</td>
<td>No Data</td>
<td>Pas encore</td>
<td>1956</td>
<td>22 910</td>
</tr>
<tr>
<td>Congo</td>
<td>Nouabalé-Ndoki</td>
<td>National Park</td>
<td>Data</td>
<td>En cours</td>
<td>1993</td>
<td>415 906</td>
</tr>
<tr>
<td>Congo</td>
<td>Ntokou-Pikounda</td>
<td>National Park</td>
<td>Data</td>
<td>En cours</td>
<td>2012</td>
<td>457 200</td>
</tr>
<tr>
<td>Congo</td>
<td>Nyanga Nord</td>
<td>Faunal reserve/ ou Hunting reserve?</td>
<td>Never Surveyed</td>
<td>Pas encore</td>
<td>1956</td>
<td>8 818</td>
</tr>
<tr>
<td>Country</td>
<td>Region</td>
<td>Type</td>
<td>Data Status</td>
<td>Date</td>
<td>Area</td>
<td></td>
</tr>
<tr>
<td>---------</td>
<td>--------</td>
<td>------</td>
<td>-------------</td>
<td>------</td>
<td>------</td>
<td></td>
</tr>
<tr>
<td>Congo</td>
<td>Nyanga Sud</td>
<td>Faunal reserve/ ou Hunting reserve?</td>
<td>Never Surveyed</td>
<td>Pas encore</td>
<td>1970</td>
<td>21 051</td>
</tr>
<tr>
<td>Congo</td>
<td>Odzala-Kokoua</td>
<td>National Park</td>
<td>Data</td>
<td>En cours (confirmé par conservateur)</td>
<td>2001</td>
<td>1 373 282</td>
</tr>
<tr>
<td>Congo</td>
<td>Tsoleou</td>
<td>Wildlife Reserve</td>
<td>No Data</td>
<td>Pas encore</td>
<td>1963</td>
<td>28 908</td>
</tr>
<tr>
<td>Equatorial Guinea</td>
<td>Altos de Nsork</td>
<td>National Park</td>
<td>Data</td>
<td>En cours</td>
<td>2000</td>
<td>69 245</td>
</tr>
<tr>
<td>Equatorial Guinea</td>
<td>Estuario de Muni</td>
<td>Natural reserve</td>
<td>Data</td>
<td>Pas encore</td>
<td>2000</td>
<td>60 188</td>
</tr>
<tr>
<td>Equatorial Guinea</td>
<td>Monte Alén</td>
<td>National Park</td>
<td>Data</td>
<td>En cours</td>
<td>1990</td>
<td>189 586</td>
</tr>
<tr>
<td>Equatorial Guinea</td>
<td>Monte Temelón</td>
<td>Natural reserve</td>
<td>Data</td>
<td>Pas encore</td>
<td>2000</td>
<td>25 721</td>
</tr>
<tr>
<td>Equatorial Guinea</td>
<td>Pedra Nzaz</td>
<td>Monument Naturel</td>
<td>Data</td>
<td>Pas encore</td>
<td>2000</td>
<td>18 527</td>
</tr>
<tr>
<td>Equatorial Guinea</td>
<td>Piedra Bere</td>
<td>Monument Naturel</td>
<td>Data</td>
<td>Pas encore</td>
<td>2000</td>
<td>20 436</td>
</tr>
<tr>
<td>Equatorial Guinea</td>
<td>Punta Liende</td>
<td>Natural reserve</td>
<td>Data</td>
<td></td>
<td>2000</td>
<td>8 407</td>
</tr>
<tr>
<td>Equatorial Guinea</td>
<td>Río Campo</td>
<td>Natural reserve</td>
<td>Data</td>
<td>En cours</td>
<td>2000</td>
<td>33 721</td>
</tr>
<tr>
<td>Gabon</td>
<td>Birougou</td>
<td>National Park</td>
<td>Data</td>
<td>Pas encore</td>
<td>2002</td>
<td>69 000</td>
</tr>
<tr>
<td>Gabon</td>
<td>Iguéla</td>
<td>Hunting reserve</td>
<td>Data</td>
<td></td>
<td>1966</td>
<td>80 000</td>
</tr>
<tr>
<td>Gabon</td>
<td>Ivindo</td>
<td>National Park</td>
<td>Data</td>
<td>Pas encore</td>
<td>2002</td>
<td>300 200</td>
</tr>
<tr>
<td>Gabon</td>
<td>Loango</td>
<td>National Park</td>
<td>Data</td>
<td>En cours</td>
<td>2002</td>
<td>149 000</td>
</tr>
<tr>
<td>Gabon</td>
<td>Lopé</td>
<td>National Park</td>
<td>Data</td>
<td>Validé</td>
<td>2002</td>
<td>495 600</td>
</tr>
<tr>
<td>Gabon</td>
<td>Minkébé</td>
<td>National Park</td>
<td>Data</td>
<td>Pas encore</td>
<td>2002</td>
<td>753 500</td>
</tr>
<tr>
<td>Gabon</td>
<td>Mondah</td>
<td>Forêt classée</td>
<td>Never Surveyed</td>
<td></td>
<td>1951</td>
<td>5 600</td>
</tr>
<tr>
<td>Gabon</td>
<td>Monts de Cristal</td>
<td>National Park</td>
<td>Data</td>
<td>Pas encore</td>
<td>2002</td>
<td>119 150</td>
</tr>
<tr>
<td>Gabon</td>
<td>Moukalaba</td>
<td>Faunal reserve</td>
<td>Never Surveyed</td>
<td></td>
<td>1962</td>
<td>21 740</td>
</tr>
<tr>
<td>Country</td>
<td>Park or Reserve Name</td>
<td>Type</td>
<td>Data Access</td>
<td>Status</td>
<td>Year</td>
<td>Area (ha)</td>
</tr>
<tr>
<td>---------</td>
<td>---------------------</td>
<td>------</td>
<td>-------------</td>
<td>--------</td>
<td>------</td>
<td>-----------</td>
</tr>
<tr>
<td>Gabon</td>
<td>Moukalaba-Doudou</td>
<td>National Park</td>
<td>Data</td>
<td>Pas encore</td>
<td>2002</td>
<td>445 800</td>
</tr>
<tr>
<td>Gabon</td>
<td>Mwagna</td>
<td>National Park</td>
<td>Data</td>
<td>Pas encore</td>
<td>2002</td>
<td>116 650</td>
</tr>
<tr>
<td>Gabon</td>
<td>Ngove-Ndogo</td>
<td>Hunting reserve</td>
<td>Data</td>
<td></td>
<td>1966</td>
<td>278 850</td>
</tr>
<tr>
<td>Gabon</td>
<td>Ouanga</td>
<td>Faunal reserve</td>
<td>Never Surveyed</td>
<td></td>
<td>1966</td>
<td>10 900</td>
</tr>
<tr>
<td>Gabon</td>
<td>Plateaux Batéké</td>
<td>National Park</td>
<td>Data</td>
<td>Validé</td>
<td>2002</td>
<td>204 150</td>
</tr>
<tr>
<td>Gabon</td>
<td>Pongara</td>
<td>National Park</td>
<td>Data</td>
<td>Pas encore</td>
<td>2002</td>
<td>96 000</td>
</tr>
<tr>
<td>Gabon</td>
<td>Sette Cama</td>
<td>Hunting reserve</td>
<td>Data</td>
<td></td>
<td>1986</td>
<td>240 500</td>
</tr>
<tr>
<td>Gabon</td>
<td>Waka</td>
<td>National Park</td>
<td>Data</td>
<td>Pas encore</td>
<td>2002</td>
<td>106 130</td>
</tr>
<tr>
<td>Gabon</td>
<td>Wonga-wongué</td>
<td>Réserve présidentielle</td>
<td>Data</td>
<td></td>
<td>1972</td>
<td>429 900</td>
</tr>
<tr>
<td>RCA</td>
<td>André Félix</td>
<td>National Park</td>
<td>No Data</td>
<td>Pas encore</td>
<td>1940</td>
<td>170 000</td>
</tr>
<tr>
<td>RCA</td>
<td>Aouk-Aoukalé</td>
<td>Faunal reserve</td>
<td>Data</td>
<td>Pas encore</td>
<td>1939</td>
<td>330 000</td>
</tr>
<tr>
<td>RCA</td>
<td>Awakaba</td>
<td>Parc Présidentiel</td>
<td>Data</td>
<td>Pas encore</td>
<td>1968</td>
<td>178 608</td>
</tr>
<tr>
<td>RCA</td>
<td>Bamingui-Bangoran</td>
<td>National Park</td>
<td>Data</td>
<td>Pas encore</td>
<td>1933</td>
<td>1 070 000</td>
</tr>
<tr>
<td>RCA</td>
<td>Basse Lobaye</td>
<td>Réserve de biosphère</td>
<td>No Data</td>
<td>Pas encore</td>
<td>1951</td>
<td>14 600</td>
</tr>
<tr>
<td>RCA</td>
<td>Dzanga-Ndoki</td>
<td>National Park</td>
<td>Data</td>
<td>En cours (confirmé)</td>
<td>1990</td>
<td>49 500</td>
</tr>
<tr>
<td>RCA</td>
<td>Gribingui-Bamingui</td>
<td>Faunal reserve</td>
<td>Data</td>
<td>Pas encore</td>
<td>1940</td>
<td>450 000</td>
</tr>
<tr>
<td>RCA</td>
<td>Manovo Gounda St Floris</td>
<td>National Park</td>
<td>Data</td>
<td>Pas encore</td>
<td>1933</td>
<td>1 740 000</td>
</tr>
<tr>
<td>RCA</td>
<td>Mbaéré Boundingué</td>
<td>National Park/ ou réserve intégrale?</td>
<td>Data</td>
<td>Pas encore</td>
<td>1996</td>
<td>86 900</td>
</tr>
<tr>
<td>RCA</td>
<td>Vassako Bolo</td>
<td>Natural reserve intégrale</td>
<td>Data</td>
<td>Pas encore</td>
<td>1933</td>
<td>86 000</td>
</tr>
<tr>
<td>RCA</td>
<td>Yata Ngaya</td>
<td>Faunal reserve</td>
<td>No Data</td>
<td>Pas encore</td>
<td>1940</td>
<td>420 000</td>
</tr>
<tr>
<td>RCA</td>
<td>Zémongo</td>
<td>Faunal reserve</td>
<td>No Data</td>
<td>Pas encore</td>
<td>1970</td>
<td>1 010 000</td>
</tr>
<tr>
<td>RDC</td>
<td>Alunda et des Tutshokwe</td>
<td>Hunting reserve</td>
<td>No Data</td>
<td>Pas encore</td>
<td>1954</td>
<td>237 279</td>
</tr>
<tr>
<td>RDC</td>
<td>Azande</td>
<td>Hunting reserve</td>
<td>Data</td>
<td>Pas encore</td>
<td>1974</td>
<td>405 789</td>
</tr>
<tr>
<td>RDC</td>
<td>Basse Kando</td>
<td>Hunting reserve</td>
<td>Never Surveyed</td>
<td>Pas encore</td>
<td>2006</td>
<td>49 283</td>
</tr>
<tr>
<td>RDC</td>
<td>Bili-Uere</td>
<td>Hunting reserve</td>
<td>Never Surveyed</td>
<td>Pas encore</td>
<td>1974</td>
<td>3 274 838</td>
</tr>
<tr>
<td>Code</td>
<td>Name</td>
<td>Type</td>
<td>Data</td>
<td>Status</td>
<td>Year</td>
<td>Surface</td>
</tr>
<tr>
<td>------</td>
<td>---</td>
<td>-----------------------</td>
<td>------</td>
<td>-------------------------------</td>
<td>-------</td>
<td>---------</td>
</tr>
<tr>
<td>RDC</td>
<td>Bombo Lumene</td>
<td>Hunting reserve</td>
<td>No Data</td>
<td>Pas encore</td>
<td>1968</td>
<td>206 395</td>
</tr>
<tr>
<td>RDC</td>
<td>Bomu</td>
<td>Faunal reserve</td>
<td>No Data</td>
<td>Pas encore</td>
<td>1974</td>
<td>1 066 711</td>
</tr>
<tr>
<td>RDC</td>
<td>Bushimaie</td>
<td>Hunting reserve</td>
<td>No Data</td>
<td>Pas encore</td>
<td>1958</td>
<td>436 870</td>
</tr>
<tr>
<td>RDC</td>
<td>Gangala-na Bodio</td>
<td>Hunting reserve</td>
<td>Data</td>
<td>Pas encore</td>
<td>1974</td>
<td>373 753</td>
</tr>
<tr>
<td>RDC</td>
<td>Garamba</td>
<td>National Park</td>
<td>Data</td>
<td>En cours</td>
<td>1938</td>
<td>511 195</td>
</tr>
<tr>
<td>RDC</td>
<td>Itombwe</td>
<td>Natural reserve</td>
<td>Data</td>
<td>Pas encore</td>
<td>2006</td>
<td>656 000</td>
</tr>
<tr>
<td>RDC</td>
<td>Iyondji Community Bonbo Reserve</td>
<td>Réserve scientifique</td>
<td>Data</td>
<td></td>
<td>2012</td>
<td>22 559</td>
</tr>
<tr>
<td>RDC</td>
<td>Kahuzi-Biega</td>
<td>National Park</td>
<td>Data</td>
<td>En cours (confirmé par conservateur)</td>
<td>1970</td>
<td>668 937</td>
</tr>
<tr>
<td>RDC</td>
<td>Kisimba Ikobo</td>
<td>Natural reserve</td>
<td>No Data</td>
<td>Pas encore</td>
<td>2006</td>
<td>96 327</td>
</tr>
<tr>
<td>RDC</td>
<td>Kiziba-baluba</td>
<td>Hunting reserve</td>
<td>No Data</td>
<td>Pas encore</td>
<td>2006</td>
<td>150 813</td>
</tr>
<tr>
<td>RDC</td>
<td>Kundelungu</td>
<td>National Park</td>
<td>Data</td>
<td>Pas encore</td>
<td>1970</td>
<td>823 636</td>
</tr>
<tr>
<td>RDC</td>
<td>Lomako-Yokokala</td>
<td>Natural reserve</td>
<td>Data</td>
<td>En cours</td>
<td>2006</td>
<td>360 188</td>
</tr>
<tr>
<td>RDC</td>
<td>Luama-Katanga</td>
<td>Hunting reserve</td>
<td>No Data</td>
<td>Pas encore</td>
<td>1954</td>
<td>340 841</td>
</tr>
<tr>
<td>RDC</td>
<td>Luama-Kivu</td>
<td>Hunting reserve</td>
<td>No Data</td>
<td>Pas encore</td>
<td>1935</td>
<td>390 028</td>
</tr>
<tr>
<td>RDC</td>
<td>Lubudi-Sampwe</td>
<td>Hunting reserve</td>
<td>No Data</td>
<td>Pas encore</td>
<td>1959</td>
<td>348 876</td>
</tr>
<tr>
<td>RDC</td>
<td>Luki</td>
<td>Réserve de Biosphère</td>
<td>No Data</td>
<td>Pas encore</td>
<td>1979</td>
<td>31 059</td>
</tr>
<tr>
<td>RDC</td>
<td>Maika-Penge</td>
<td>Hunting reserve</td>
<td>No Data</td>
<td>Pas encore</td>
<td>1951</td>
<td>149 864</td>
</tr>
<tr>
<td>RDC</td>
<td>Maiko</td>
<td>National Park</td>
<td>Data</td>
<td>Pas encore</td>
<td>1970</td>
<td>1 088 578</td>
</tr>
<tr>
<td>RDC</td>
<td>Mangai</td>
<td>Natural reserve</td>
<td>No Data</td>
<td>Pas encore</td>
<td>1944</td>
<td>331 870</td>
</tr>
<tr>
<td>RDC</td>
<td>Mondo-Missa</td>
<td>Hunting reserve</td>
<td>Data</td>
<td>Pas encore</td>
<td>1974</td>
<td>195 761</td>
</tr>
<tr>
<td>RDC</td>
<td>Mufufya</td>
<td>Hunting reserve</td>
<td>No Data</td>
<td>Pas encore</td>
<td>1954</td>
<td>91 097</td>
</tr>
<tr>
<td>RDC</td>
<td>Molumbu</td>
<td>Hunting reserve</td>
<td>No Data</td>
<td>Pas encore</td>
<td>1957</td>
<td>126 785</td>
</tr>
<tr>
<td>RDC</td>
<td>Mwene Kay</td>
<td>Hunting reserve</td>
<td>No Data</td>
<td>Pas encore</td>
<td>1954</td>
<td>54 051</td>
</tr>
<tr>
<td>RDC</td>
<td>Mwene Musoma</td>
<td>Hunting reserve</td>
<td>No Data</td>
<td>Pas encore</td>
<td>1954</td>
<td>132 346</td>
</tr>
<tr>
<td>RDC</td>
<td>Okapis</td>
<td>Faunal reserve</td>
<td>Data</td>
<td>Pas encore</td>
<td>1992</td>
<td>1 384 674</td>
</tr>
<tr>
<td>RDC</td>
<td>Oshwe</td>
<td>Hunting reserve</td>
<td>No Data</td>
<td>Pas encore</td>
<td>2004</td>
<td>1 325 177</td>
</tr>
<tr>
<td>RDC</td>
<td>Parc Président Mobutu</td>
<td>Natural reserve</td>
<td>No Data</td>
<td>Pas encore</td>
<td>1983</td>
<td>3 569</td>
</tr>
<tr>
<td>Country</td>
<td>Province</td>
<td>Type</td>
<td>Status</td>
<td>Date</td>
<td>Area (km²)</td>
<td></td>
</tr>
<tr>
<td>---------</td>
<td>----------</td>
<td>------</td>
<td>--------</td>
<td>------</td>
<td>------------</td>
<td></td>
</tr>
<tr>
<td>RDC</td>
<td>Plateau de Kundelungu</td>
<td>Hunting reserve</td>
<td>No Data</td>
<td>Pas encore</td>
<td>1953</td>
<td>164 518</td>
</tr>
<tr>
<td>RDC</td>
<td>Rubi-Tele</td>
<td>Hunting reserve</td>
<td>No Data</td>
<td>Pas encore</td>
<td>1930</td>
<td>619 143</td>
</tr>
<tr>
<td>RDC</td>
<td>Rutshuru</td>
<td>Hunting reserve</td>
<td>No Data</td>
<td>Pas encore</td>
<td>1974</td>
<td>66 067</td>
</tr>
<tr>
<td>RDC</td>
<td>Salonga</td>
<td>National Park</td>
<td>Data</td>
<td>En cours</td>
<td>1970</td>
<td>3 316 587</td>
</tr>
<tr>
<td>RDC</td>
<td>Sankuru</td>
<td>Natural reserve</td>
<td>Never Surveyed</td>
<td>Pas encore</td>
<td>2007</td>
<td>2 441 964</td>
</tr>
<tr>
<td>RDC</td>
<td>Sarambwe</td>
<td>Natural reserve</td>
<td>No Data</td>
<td>Pas encore</td>
<td>2006</td>
<td>75 266</td>
</tr>
<tr>
<td>RDC</td>
<td>Swa-Kibula</td>
<td>Hunting reserve</td>
<td>Never Surveyed</td>
<td>Pas encore</td>
<td>1952</td>
<td>100 375</td>
</tr>
<tr>
<td>RDC</td>
<td>Tayna</td>
<td>Natural reserve</td>
<td>Data</td>
<td>Pas encore</td>
<td>2006</td>
<td>89 292</td>
</tr>
<tr>
<td>RDC</td>
<td>Upemba</td>
<td>National Park</td>
<td>Data</td>
<td>Pas encore</td>
<td>1939</td>
<td>1 367 365</td>
</tr>
<tr>
<td>RDC</td>
<td>Virunga</td>
<td>National Park</td>
<td>Data</td>
<td>En cours</td>
<td>1925</td>
<td>776 893</td>
</tr>
<tr>
<td>RDC</td>
<td>Yangambi</td>
<td>Réserve de Biosphère</td>
<td>No Data</td>
<td>Pas encore</td>
<td>1976</td>
<td>221 472</td>
</tr>
</tbody>
</table>
Appendix II Species surveyed

<table>
<thead>
<tr>
<th>Species</th>
<th>Survey frequency</th>
<th>Geographical Distribution</th>
<th>IUCN</th>
</tr>
</thead>
<tbody>
<tr>
<td>Loxodonta africana</td>
<td>172</td>
<td>6</td>
<td>VU</td>
</tr>
<tr>
<td>Great apes</td>
<td>47</td>
<td>6</td>
<td></td>
</tr>
<tr>
<td>Gorilla gorilla gorilla</td>
<td>40</td>
<td>6</td>
<td>CR</td>
</tr>
<tr>
<td>Cephalophe rouges</td>
<td>37</td>
<td>6</td>
<td></td>
</tr>
<tr>
<td>Pan troglodytes troglodytes</td>
<td>32</td>
<td>6</td>
<td>EN</td>
</tr>
<tr>
<td>Eudorcas rufifrons</td>
<td>30</td>
<td>1</td>
<td>VU</td>
</tr>
<tr>
<td>Panthera leo</td>
<td>13</td>
<td>6</td>
<td>VU</td>
</tr>
<tr>
<td>Tragelaphus eurycerus</td>
<td>12</td>
<td>5</td>
<td>NT</td>
</tr>
<tr>
<td>Ceratotherium simum cottoni</td>
<td>12</td>
<td>2</td>
<td>CR</td>
</tr>
<tr>
<td>Panthera pardus</td>
<td>10</td>
<td>6</td>
<td>NT</td>
</tr>
<tr>
<td>Lycaon pictus</td>
<td>10</td>
<td>1</td>
<td>EN</td>
</tr>
<tr>
<td>Gorilla beringei graueri</td>
<td>8</td>
<td>1</td>
<td>EN</td>
</tr>
<tr>
<td>Gorilla beringei beringei</td>
<td>8</td>
<td>1</td>
<td>EN</td>
</tr>
<tr>
<td>Hippopotamus amphibius</td>
<td>7</td>
<td>6</td>
<td>VU</td>
</tr>
<tr>
<td>Pan paniscus</td>
<td>7</td>
<td>1</td>
<td>EN</td>
</tr>
<tr>
<td>Pan troglodytes ellioti</td>
<td>7</td>
<td>1</td>
<td>EN</td>
</tr>
<tr>
<td>Lophocebus aterrimus</td>
<td>5</td>
<td>2</td>
<td>NT</td>
</tr>
<tr>
<td>Okapia johnstoni</td>
<td>5</td>
<td>1</td>
<td>NT</td>
</tr>
<tr>
<td>Pan troglodytes schweinfurthii</td>
<td>5</td>
<td>1</td>
<td>EN</td>
</tr>
<tr>
<td>Gorilla gorilla dehli</td>
<td>5</td>
<td>1</td>
<td>CR</td>
</tr>
<tr>
<td>Smutsia gigantea</td>
<td>3</td>
<td>6</td>
<td>NT</td>
</tr>
<tr>
<td>Blue duiker</td>
<td>1</td>
<td>6</td>
<td>LC</td>
</tr>
<tr>
<td>Diceros bicornis longipes</td>
<td>1</td>
<td>1</td>
<td>EX</td>
</tr>
</tbody>
</table>

3 Number of countries with the study scope where the species, sub-species or species group occurs